[CONTRIBUTION FROM THE LOW TEMPERATURE LABORATORY, DEPARTMENTS OF CHEMISTRY AND CHEMICAL ENGINEERING UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA]

The Heat Capacity of Lithium Chloride from 15 to 325 Degrees Kelvin^{1a}

By D. A. Shirley^{1b}

Received January 4, 1960

The heat capacity of lithium chloride has been measured in the temperature range $15-325^{\circ}$ K. The data are analyzed in terms of an optical branch model and found to agree qualitatively but not quantitatively with this model. A relationship derived from this model between heat capacity and elastic constants is found to be obeyed roughly by several alkali halides. For LiCl, $S_{293.15}$ is -14.17 ± 0.02 gibbs/mole.

Simple theoretical considerations^{1c} suggest that the phonon spectrum of a diatomic lattice of the sodium chloride structure should consist of an optical branch, associated with the unlike atoms vibrating against each other, and an acoustical branch. If the ionic masses are quite different, the frequency of the optical branch will not change strongly with wave number, changing only from $\omega \alpha \mu^{-1/2}$ to $\omega \alpha m^{-1/2}$, where μ and m are the reduced mass and the mass of the smaller ion, respectively. Then to a first approximation the heat capacity may be represented by a combination of three isochromatic Einstein functions for the optical branch plus a Debye function for the acoustical branch.² The present research was undertaken to determine how accurately this model represents the heat capacity in a nearly ideal case.

The most obvious manifestation of an optical branch is a maximum in the function C_v/T^3 at low temperatures. This maximum is essentially due to the optical branch, since C_v/T^3 approaches constancy at low temperatures on the Debye model. Lithium chloride was chosen for this investigation because the ionic masses are enough different for the optical branch model to be applicable, while both ions are light enough for the maximum in C_v/T^3 to lie well within the temperature range of hydrogen calorimetry.

Experimental

The sample was "Bakers Analyzed" reagent, lot number 90941, supplied with the percentage analysis:

Assay (LiCl)	99.1
Loss on drying	0.2
Insoluble matter	.005
Alkalinity	.006
Nitrate	.0005
Sulfate	.005
Barium	.0002
Calcium	.002
Heavy metals	.00005
Potassium	.03
Sodium	.06

Since lithium chloride is extremely hygroscopic, it was felt that the figure for "loss on drying" did not represent the total water content. Three samples were fused and were found to decrease in weight by $0.74 \pm 0.02\%$. The sample was further purified by several recrystalliza-tions and fused. It was cooled in a desiccator, and the calorimeter was filled in a dried gloved box. A finely

powdered sample in an open bottle in the gloved box did not gain weight during the time when the calorimeter was being filled. The sample which was used consisted of crystals of dimensions in the range 0.1–1.0 mm. The weight of lithium chloride was 188.033 g. in vacuo.

The heat capacity measurements were made with the copper calorimeter used by Papadopoulos and Giauque.³ The heat capacity of the calorimeter was remeasured during the course of the present work. The temperature was measured by a gold resistance thermometer-heater which was compared with Laboratory Standard Thermocouple No. 105 before and after each heating period. The thermocouple was compared with the triple $(13.94^{\circ} \text{ K.})$ and boiling points $(20.36^{\circ} \text{ K.})$ of hydrogen and the triple $(63.15^{\circ} \text{ K})$, and boil-ing points $(77.34^{\circ} \text{ K.})$ of nitrogen. 0° was taken as 273.15° K. and 1 defined calorie was taken equal to 4.1840 absolute joules.

Results

The experimental heat capacities are listed in Table I. The data in Series II were taken because a faulty contact within the potentiometer made the resistance thermometer calibration in Series I incomplete below 100°K.

Most of the experimental points showed deviations of considerably less than 0.1% from a smooth curve through the data. The deviations were very small in the liquid nitrogen temperature range, the ideal region for this type of calorimetry, and of the order of 0.1% at the lowest and highest temperatures. The accuracy was 0.1% above 30° K., deteriorating to about 1% below 20° K. because of the decreasing sensitivity of the resistance thermometer.

In Table II are collected smoothed values of the thermodynamic properties at convenient temperatures. The entropy $S_{298.15}^{\circ} = 14.17 \pm 0.02$ gbs./mole.⁴ This may be compared with the value 13.9 ± 0.5 gbs./mole obtained by Kelley from the heat and free energy of formation.⁵

Discussion

For purposes of comparison with theoretical heat capacity functions, the experimental values of C_p were converted to C_v using the thermodynamic relationship

$$C_{\rm p} - C_{\rm v} = -VT \frac{\alpha^2}{\beta} \tag{1}$$

The volume expansion data which were used were those of Henglein⁶ and of Straumanis and Ievins,⁷

(3) M. N. Papadopoulos and W. F. Giauque, THIS JOURNAL, 77, 2740 (1955).

(4) 1 gbs. (gibbs) = 1 defined calorie/defined degree Kelvin, See W. F. Giauque, E. W. Hornung, J. E. Kunzler and T. R. Rubin, ibid., 82, 62 (1960).

(5) K. K. Kelley, "Contributions to the Data on Theoretical Metallurgy," XI, 60 (1948), (U. S. Bureau of Mines Bulletin 477).

(6) F. A. Henglein, Z. physik. Chem., 117, 275 (1925). (7) M. Straumanis and A. Ievins, Z. anorg. u. allgem. Chem., 238, 175 (1938).

^{(1) (}a) This work was supported by National Science Foundation Grant G-3014. (b) National Science Foundation Predoctoral Fellow, 1955-1958. (c) See, for example, C. Kittel, "Introduction to Solid State Physics," 2nd Ed., 1956, pages 109 ff.

⁽²⁾ See, for example, K. S. Pitzer, "Quantum Chemistry," 1953, p. 306-316.

Vol. 82

	TABL	ΕI				-		
HEAT CAPACITY OF LITHIUM CHLORIDE			TABLE II					
<i>т</i> , °к.	C_p , gbs./mole	<i>T</i> , °K.	Cp, gbs./mole	THERMO:	DYNAMIC PRO	PERTIES OF	LITHIUM	CHLORIDE IN
Se	ries I	212.60	10.531			GIBBS MOLE	5-1	
16.65	0.07464	219.84	10.650	T, °K.	$C_{\rm p}$	ST ⁰	$\frac{-(F^{0}-}{H_{0}^{0})/T}$	$\frac{(H^0 - H_0^0)}{T}$
19.07	.1159	227,52	10.769	15	0.0504	0.0186	0.0055	0.0131
21.64	.1799	235.07	10.865	20	. 1356	0434	0115	0319
24.40	. 2721	242.55	10.939	25	2978	0896	0221	0675
27.49	. 4145	246.90	10.996	30	5538	1652	0391	1261
30.59	. 5921	249.94	11.035	35	. 8834	2745	0645	.2100
33.81	. 8012	255.11	11.056	40	1.284	4181	0994	.3187
37.37	1.0672	263.92	11.185	45	1.737	5951	1380	4571
41.70	1.4341	272.31	11.258	50	2.214	8027	1939	6088
46.58	1.8862	280.78	11.350	55	2.712	1.037	260	.777
51.39	2.3573	290.11	11.400	60	3.227	1.295	.335	.960
56.60	2.8800	299.64	11.484	70	4.231	1.868	.512	1.356
62.36	3.4728	309.77	11.545	80	5.126	2,493	.721	1.772
68.53	4.0884	320.42	11.625	90	5,926	3.144	. 953	2.191
74.98	4.6886	Se	ries I1	100	6.637	3.806	1.206	2.600
81.43	5.2512	13.77	0.03691	110	7.250	4.468	1.472	2.996
88.01	5.7732	15.42	. 05554	120	7.794	5.122	1.794	3.373
95.08	6.3009	17.54	. 08496	130	8.267	5.765	2.033	3.732
102.03	6.7694	20.38	. 14440	140	8.686	6.394	2.322	4.072
109.30	7.2094	23.03	. 2247	150	9.057	7.006	2.614	4.392
116.72	7.6216	25.84	3351	160	9.374	7.601	2.907	4.694
124.12	8.0110	29.27	. 5060	170	9.651	8.178	3.201	4.977
131.52	8.3291	32.67	7173	180	9.893	8.736	3 493	5.243
138.83	8.6401	36.36	. 9856	190	10.106	9.277	3.783	5.494
146.06	8.9202	40.83	1.4541	200	10.310	9.800	4.071	5.729
153.34	9.1630	46.05	1.8386	210	10.494	10.308	4.356	5.952
160.92	9.4061	51.94	2.4015	220	10.655	10.800	4.638	6.162
168.45	9.6014	58.29	3.0468	230	10.794	11.276	4.916	6.360
175.72	9.7770	64.71	3.7037	240	10.915	11.738	5.191	6.547
182.99	9.9583	71.80	4.4009	250	11.035	12.186	5.462	6.724
190.21	10.106	80.03	5.1198	260	11.144	12.621	5.729	6.892
197.56	10.264	88.52	5.8057	270	11.240	13.044	5.992	7.052
204.91	10,404	97.03	6.4289	280	11 222	13 454	6 951	7 203

and the compressibility data were those of Slater.⁸ The values of $C_p - C_v$ for several temperatures are listed in Table III. It should be noted that uncertainties in α and β introduce a considerable error into the calculation of C_v at high temperatures, while the total correction is only 0.2% at 50° and 1.2% at 100°K.

The expected maximum in C_v/T^3 occurs at 33 °K. In Fig. 1 C_v/T^3 is plotted against *T*, along with several theoretical curves. It is clear that the optical branch model is qualitatively correct for lithium chloride, although a good fit of the data is not obtainable.9

During the course of this work the thermal data of Berg and Morrison¹⁰ on several other alkali halides became available. By considering these, one can made a systematic comparison of the thermal properties of alkali halides with the optical branch model. First we note that it is customary to plot θ_D derived from heat capacity measurements against T. The parameter θ_D then exhibits a minimum at a temperature T_M which may be attributed to the optical branch, and in fact this

8) J. C. Slater, Phys. Rev., 23, 488 (1924).

(9) Note that M. H. Norwood and C. V. Briscoe [Phys. Rev., 112, 45 (1958)] have used infrared and elastic constant data to derive the heat capacities of the potassium halides.

(10) W. T. Berg and J. A. Morrison, Proc. Roy. Soc. (London), **2242**, 467 (1957).

		<u>-</u> 1		
<i>Т</i> , °К.	Cp	ST°	$-(F^0 - H_0^0)/T$	$(H^{\mathfrak{g}} - H_{\mathfrak{g}}^{\mathfrak{g}}),$
15	0.0504	0.0186	0.0055	0.0131
20	. 1356	.0434	0115	. 0319
2ŏ	.2978	.0896	.0221	0675
30	. 5538	1652	.0391	1261
35	. 8834	2745	.0645	. 2100
40	1.284	4181	0994	. 3187
45	1.737	. 5951	1380	4571
50	2.214	. 8027	1939	6088
55	2.712	1.037	. 260	.777
60	3.227	1.295	. 335	.960
70	4.231	1.868	. 512	1.356
80	5.126	2.493	.721	1.772
90	5.926	3.144	. 953	2.191
100	6.637	3.806	1.206	2.600
110	7.250	4.468	1.472	2.996
120	7.794	5.122	1.794	3.373
130	8.267	5.765	2.033	3.732
140	8.686	6.394	2.322	4.072
150	9.057	7.006	2.614	4.392
160	9.374	7.601	2.907	4.694
170	9.651	8.178	3.201	4.977
180	9.893	8.736	3.493	5.243
190	10.106	9.277	3.783	5.494
200	10.310	9.800	4.071	5.729
210	10.494	10.308	4.356	5.952
220	10.655	10.800	4.638	6.162
230	10.794	11.276	4.916	6.360
240	10.915	11.738	5.191	6.547
250	11.035	12.186	5.462	6.724
260	11.144	12.621	5.729	6.892
270	11.240	13.044	5.992	7.052
280	11.323	13.454	6.251	7.203
290	11.403	13.853	6.506	7.347
298.15	11.470	14.170	6.712	7.458
300	11.487	14.241	6.758	7.483
310	11.557	14.619	7.005	7.614
320	11.622	14.986	7.249	7.737
325	11.680	15.166	7.369	7.797

TABLE III

 $C_{\rm p} - C_{\rm v} = -VT \frac{\alpha^2}{\alpha}$ for Lithium Chloride

جر ا)
<i>T</i> , °K.	$C_p - C_v$, gbs./mole
25	0.0000
50	.003
75	.032
100	.076
150	.237
200	.411
250	. 573
300	.738

minimum corresponds very closely to the maximum in the functions C_v/T^3 . If $C_v(T_M/T)^3$ is plotted against $T/T_{\rm M}$ as in Fig. 2, it is apparent that the behavior of this function is again qualitatively what would be expected on the optical branch model. As would be expected the maximum is more pronounced for LiCl and NaI, where the masses are quite different, than for KCl, KBr and KI, where the masses are more nearly equal.

Fig. 1.— C_v/T^3 vs. T^3 for lithium chloride. The circles represent the experimental data. The curves are based on (A) the optical branch model with $\theta_D = 310$, $\theta_E = 250$ chosen empirically, (B) a calculation due to Karo (footnote 11) and (C) a Debye function with $\theta_D = 450$.

TABLE IV					
Substance	<i>Т</i> м, °К.	$\begin{array}{c} 10^2 \sqrt{ac_{11}/\mu}^{11} \\ \text{cgs. units} \\ \times \text{ (moles)}^{1/2} \end{array}$	$T_{\rm M}/\sqrt{ac_{11}/\mu}$		
LiCl	33	4.94	6.7		
NaI	12	2.28	5.3		
KC1	17	2.86	5.9		
KBr	12	2.30	5.2		
KI	9.5	2.00	4.7		

(11) The values of c_{11} were obtained from A. M. Karo, reported in University of California Radiation Laboratory Report UCRL 5525 (1959), and from ref. 9.

Fig. 2.—A reduced plot of $C_v(T_M/T)^3$ for several alkali halides(Ω , KCl; \times , KBr; +, NaI; •, KI; Δ , LiCl).

One further correlation which may be made consists of comparing $T_{\rm M}$ with the quantity $\sqrt{(ac_{11})/\mu}$. According to the model

$$T_{\rm M} \alpha \omega \alpha \sqrt{a c_{11}/\mu}$$
 (2)

The results are collected in Table IV. While the ratio is not constant within experimental error, there is a strong correlation, considering the range of the parameters.

Acknowledgments.—The author wishes to thank L. Murch and J. B. Ott for assisting with the experimental measurements, Virginia Shirley for help with the calculations and especially Professor W. F. Giauque for his continuing interest in this work.

[Contribution from the Physicochemical Research Division, U. S. Army Chemical Warfare Laboratories, Army Chemical Center, Maryland]

Properties, Interaction and Esterification of Methylphosphonic Dihalides

By B. M. Zeffert, P. B. Coulter and Harvey Tannenbaum

Received November 21, 1959

The mechanism of the formation of Sarin by the esterification of methylphosphonic dihalides with 2-propanol has been elucidated from physicochemical considerations, and evidence for the extent and rate of metathesis of an equimolar mixture of methylphosphonic dichloride and methylphosphonic diffuoride is presented. The densities, viscosities, molar polarizations, dipole moments, refractive indexes, vapor pressures, freezing points and infrared spectral data of the dihalides were obtained, as well as the solid-liquid phase relations of the dichlor-diffuor system.

The final step in the synthesis of isopropyl methylphosphonofluoridate (Sarin) involves the reaction of 2-propanol with an equimolar mixture of methylphosphonic dichloride and methylphos phonic diffuoride (hereafter termed dichlor and difluor, respectively). The over-all reaction is

$$CH_{3}P(O)Cl_{2} + CH_{3}P(O)F_{2} + 2(CH_{3})_{2}CHOH \longrightarrow 2CH_{3}P(O)(F)OCH(CH_{3})_{2} + 2HCl \quad (1)$$

Studies of the mechanism of this reaction were made in Germany after the initial preparation of Sarin by Schrader and also in England and in this country after World War II. Based on observations of the ease of reaction and of the nature and relative quantities of products formed in reactions of derivatives of methylphosphonic acid, Perry¹ postulated a sequence of reactions

 $CH_{3}P(O)Cl_{2} + (CH_{3})_{2}CHOH \longrightarrow$

$$CH_{3}P(O)(Cl)OCH(CH_{3})_{2} + HCl \quad (2)$$

$$CH_{3}P(O)F_{2} + (CH_{3})_{2}CHOH \xrightarrow{HCl}{\longrightarrow}$$

$$CH_{3}P(O)(F)OCH(CH_{3})_{2} + HF \quad (3)$$
$$CH_{3}P(O)(C1)OCH(CH_{3})_{2} + HF \longrightarrow$$

 $CH_{3}P(O)(F)OCH(CH_{3})_{2} + HC1$ (4)

These are accompanied by the side reaction $CH_3P(O)(C1)OCH(CH_3)_2 + (CH_3)_2CHOH \longrightarrow$

$$CH_{3}/_{2} + (CH_{3})_{2}CHOH \longrightarrow$$

 $CH_{3}P(O)[OCH(CH_{3})_{2}]_{2} + HCl (5)$

⁽¹⁾ B. J. Perry, Ministry of Supply, U.K., unpublished report.